

第5世代(700MHz帯~2GHz帯)携帯無線通信陸上 移動局の特性試験方法

証明規則 第2条第1項第11号の34

令和2年10月2日 初版

株式会社ディーエスピーリサーチ

この特性試験方法は、特定無線設備の技術基準適合証明等に関する規則の一部を改正する省令(平 成17年総務省令第94号)の公布に伴い、特定無線設備の技術基準適合証明等に関する規則(平成 16年総務省令第2号)別表第一号一(3)の規定に基づく特性試験の試験方法を定める告示(平成16 年告示第88号)第2項に規定する届出及び公表のために作成されたものである。

改版情報

版数/年月日	内容	備考
初版 令和2年10月2日	令和2年8月27日の法令改正に伴い、臨時の試験方法として定める。	

DSP Research, Inc.

25

28

30

目 次

13, 14

15, 16

17

隣接チャネル漏洩電力

副次的に発する電波等の限度

搬送波を送信していないときの漏洩電力

第一章 試験環境と試験条件

-1-	H- 4-32	1.514.30 — H. 1.3751411		
	1	試験環境		5
	2	試験条件(共通)		5
第二章	試駁	方法		
	1	振動試験		9
	2	温湿度試験		10
3	, 4	周波数の偏差		12
5	, 6	占有周波数带幅		14
7,	8	スプリアス発射又は不要発射の強度(帯域外	領域)	16
9,	10	スプリアス発射又は不要発射の強度(スプリ	アス領域)	19
11,	12	空中線電力の偏差		23

第一章 試験環境と試験条件

1	試験環境 · · · · · · · · · ·	5
2	試験条件(共通)	5

1 試験環境

- 1.1 試験場所の環境
 - 1.1.1 技術基準適合証明における特性試験の場合

室内の温湿度は、JIS Z8703 による常温 5~35℃の範囲、常湿45~85%(相対湿度)の範囲内とする。

1.1.2 認証における特性試験の場合

上記に加えて周波数の偏差については、温湿度試験及び振動試験を行う。詳細については温湿度試験項目を参照すること。

2 試験条件(共通)

- 2.1 電源電圧
 - 2.1.1 技術基準適合証明における特性試験の場合 電源は、定格電圧を供給する。
 - 2.1.2 認証における特性試験の場合

電源は、定格電圧及び定格電圧±10%を供給する。ただし次の場合を除く。

- 2.1.2.1 外部電源から受験機器への入力電圧が±10%変動した場合における受験機器の無線部(電源は除く)の回路への入力電圧の変動が±1%以下であることが確認できたときは、定格電圧のみで試験を行う。
- 2.1.2.2 電源電圧の変動幅が±10%以内の特定の変動幅内でしか受験機器が動作しない 設計となっており、その旨及び当該特定の変動幅の上限値と下限値が工事設計 書に記載されているときは、定格電圧及び当該特定の変動幅の上限値及び下限 値で試験を行う。
- 2.2 試験周波数と試験項目
 - 2.2.1 受験機器の発射可能な周波数が3波以下の場合は、全波で全試験項目について試験を行う。
 - 2.2.2 受験機器の発射可能な周波数が4波以上の場合は、上中下の3波の周波数で全試験項目について試験を行う。
- 2.3 予熱時間

工事設計書に予熱時間が必要である旨が明記されている場合は、記載された予熱時間 経過後に測定する。その他の場合は、予熱時間をとらない。

- 2.4 試験設備の条件等
 - 2.4.1 測定値に対する測定精度は、必要な試験項目において説明する。測定器は、較正され たものを使用する。
 - 2.4.2 スペクトルアナライザは、掃引方式デジタルストレージ型とする。
 - 2.4.3 スペクトルアナライザに帯域幅内の電力総和を算出する機能があるときは、その算出 結果を用いてもよい。帯域幅内の電力総和を計算で求める場合は、次のとおりとする。
 - 2.4.3.1 帯域幅内の全データをコンピュータの配列変数に取り込む。
 - 2.4.3.2 取り込んだ全データ(dB値)を電力次元の真数に変換する。
 - 2.4.3.3 次式により、真数に変換した値を用いて電力総和(Ps)を計算する。

$$P_s = \left(\sum_{i=1}^n E_i\right) \times \frac{Sw}{RBW \times k \times n}$$

ここで、

Ps:帯域幅内の電力総和(W) E;:1データ点の測定値(W)

Sw:帯域幅(MHz)

n : 帯域幅内のデータ点数 k : 等価雑音帯域幅の補正値 RBW:分解能帯域幅(MHz)

2.4.4 スペクトルアナライザのアベレージ機能として対数の平均(ビデオアベレージ)を標準とする機種が多いが、対数の平均ではなく、RMS平均を使用する。

2.5 本試験方法の適用対象

- 2.5.1 空中線端子(試験用端子を含む。)がある無線設備に適用する。
- 2.5.2 内蔵又は外部試験装置を用いて次の機能が実現できることが望ましい。
 - 2.5.2.1 試験周波数に設定する機能
 - 2.5.2.2 最大出力状態に設定する機能
 - 2.5.2.3 連続受信状態に設定する機能
 - 2.5.2.4 チャネル間隔(チャネル帯域幅)又はその組合せ、変調方式(QPSK、16QAM等)、 サブキャリア間隔、サブキャリア数(リソースブロック数)、サブキャリア配 置(リソースブロック配置)等を任意に設定する機能
 - 2.5.2.5 標準符号化試験信号 (ITU-T勧告O. 150による9段PN符号、15段PN符号、23段PN符号等) を用いて変調する機能

注 上記の機能が実現できない機器の試験方法については、別途検討する。

2.6 補足事項

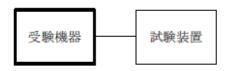
- 2.6.1 受験機器の擬似負荷(減衰器)の特性インピーダンスは、50Ωとする。
- 2.6.2 各試験項目の結果は、測定値とともに技術基準の許容値を表示する。
- 2.6.3 測定値の算出に使用したバースト時間率 (=電波を発射している時間/バースト周期) は、測定条件と共に表示する。
- 2.6.4 測定器の条件等及び測定操作手順に記載の搬送波周波数は、割当周波数とする。
- 2.6.5 受験機器の測定点は、送受信装置の出力端から空中線系の給電線の入力端の間のうち、 定格の空中線電力を規定しているところとする。定格の空中線電力を規定していると ころで測定できない場合は、適当な測定端子で測定して換算する。
- 2.6.6 外部試験装置は、受験機器と回線接続ができ、試験用動作モード、空中線電力の制御 等が可能な装置、又は試験に必要な信号を受験機器に与える信号発生器とする。
- 2.6.7 外部試験装置なしで送信可能な無線設備は、フリーランの状態で測定してもよい。
- 2.6.8 工事設計書にサブキャリア間隔、サブキャリア数、サブキャリア配置、出力制限等が記載されている場合は、その条件で試験を行ってもよい。
- 2.6.9 受験機器に空中線端子がある場合は、空中線端子で測定を行ってもよい。
- 2.6.10 本試験方法は標準的な方法を定めたものであるが、これに代わる他の試験方法について技術的に妥当であると証明された場合は、その方法で試験を行ってもよい。

2.7 その他の条件

2.7.1 通信方式は、基地局から陸上移動局へ送信を行う場合にあっては直交周波数分割多重 方式と時分割多重方式を組み合わせた多重方式を、陸上移動局から基地局へ送信する 場合にあってはシングルキャリア周波数分割多元接続方式又は直交周波数分割多元 接続方式を使用する周波数分割複信方式である。

(設備規則 第49条の6の13 第1項 第一号 イ)

- 2.7.2 キャリアアグリゲーション技術(二以上の搬送波を同時に用いて一体として行う無線 通信の技術をいう。)を用いる場合には、一又は複数の基地局との間の通信に限るも のとする。
 - (設備規則 第49条の6の13 第1項 第一号 へ)
- 2.7.3 キャリアアグリゲーションを用いて連続しない複数の搬送波を同時に使用する装置 の試験において、他の周波数帯の搬送波の測定を行うときは、当該周波数帯の特性試 験方法及び技術基準を適用する。ただし、別途、試験項目に規定する場合は除く。
- 2.7.4 アンカーとして使用する搬送波は、「空中線電力の偏差」の試験を除き、キャリアア グリゲーションとして扱わない。


第二章 試験方法

1	振動試験	9
2	温湿度試験	10
3, 4	周波数の偏差	12
5, 6	占有周波数带幅	14
7, 8	スプリアス発射又は不要発射の強度(帯域外領域)	16
9, 10	スプリアス発射又は不要発射の強度(スプリアス領域)	19
11, 12	空中線電力の偏差	23
13, 14	隣接チャネル漏洩電力	25
15, 16	搬送波を送信していないときの漏洩電力	28
17	副次的に発する電波等の限度	30

1 振動試験

1.1 測定系統図

1.2 受験機器の状態

- 1.2.1 振動試験機で加振中は、受験機器を非動作状態(電源オフ)とする。
- 1.2.2 振動試験機で加振終了後、受験機器の動作確認を行う場合は、受験機器を試験周波数に設定して通常の使用状態で送信する。

1.3 測定操作手順

- 1.3.1 受験機器を取付治具(受験機器を通常の装着状態と等しくする器具)等により、振動試験機の振動板に固定する。
- 1.3.2 振動試験機により受験機器に振動を加える。ただし、受験機器に加える振動の振幅、 振動数及び方向は、次の「1.3.2.1」及び「1.3.2.2」の条件に従い、振動条件の設定 順序は任意でよい。
 - 1.3.2.1 全振幅 3 mm、最低振動数 (注 1) から毎分500 回までの振動を上下、左右及び前後のそれぞれ15分間 (振動数の掃引周期は10分とし、振動数を掃引して 「最低振動数→毎分500 回→最低振動数」の順序で振動数を変えるものとする。すなわち、15分間で1.5周期の振動数の掃引を行う。)
 - 注 1 最低振動数は、振動試験機の設定可能な最低振動数(ただし毎分300 回以下)とする。
 - 1.3.2.2 全振幅 1 mm、振動数毎分500 回から1800 回までの振動を上下、左右及び前後の それぞれ15 分間(振動数の掃引周期は10 分とし、振動数を掃引して「毎分 500 回→毎分1800 回→毎分500 回」の順序で振動数を変えるものとする。すなわち、 15分間で1.5周期の振動数の掃引を行う。)
- 1.3.3 振動条件は「1.3.2」にかかわらず、次の条件でも良い。

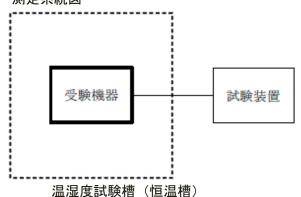
周波数	ASD (Acceleration Spectral Density) ランダム振動	
5Hzから20Hz	0. 96m²/s³	
20Hzから500Hz	20Hzでは0.96㎡/s³。それ以上の周波数では-3dB/0ctave	

このランダム振動を上下、左右及び前後(設定順序は任意)にてそれぞれ30分間行う。

1.3.4 「1.3.2」、もしくは 「1.3.3」 の振動を加えた後、規定の電源電圧(注2)を加えて 受験機器を動作させる。

注2 規定の電源電圧は、「第一章 2.1 電源電圧」の項目を参照

1.3.5 試験装置を用いて受験機器の周波数を測定する。 (周波数の具体的な測定方法は、「第二章 周波数の偏差」の項目を参照)


1.4 その他の条件

- 1.4.1 本試験項目は、認証の試験の場合のみに行う。
- 1.4.2 本試験項目は、移動せずかつ振動しない物体に固定して使用されるものであり、その 旨が工事設計書に記載されている場合には、本試験項目は行わない。

2 温湿度試験

2.1 測定系統図

2.2 受験機器の状態

- 2.2.1 規定の温湿度状態に設定して、受験機器を温湿度試験槽内で放置しているときは、受験機器を非動作状態(電源オフ)とする。
- 2.2.2 規定の放置時間経過後(湿度試験にあっては常温常湿の状態に戻した後)、受験機器の動作確認を行う場合は、受験機器を試験周波数に設定して通常の使用状態で送信する。

2.3 測定操作手順

2.3.1 低温試験

- 2.3.1.1 受験機器を非動作状態として温湿度試験槽内に設置し、この状態で温湿度試験槽内の温度を低温(O°C、-10°C、-20°Cのうち受験機器の仕様の範囲内で最低のもの)に設定する。
- 2.3.1.2 この状態で1時間放置する。
- 2.3.1.3 上記「2.3.1.2」の時間経過後、温湿度試験槽内で規定の電源電圧(注 1)を加えて受験機器を動作させる。
 - 注1 規定の電源電圧は、「第一章 2.1 電源電圧」の項目を参照
- 2.3.1.4 試験装置を用いて受験機器の周波数を測定し、許容偏差内にあることを確認す る。(注2)
 - 注2 周波数の具体的な測定方法は、「第二章 周波数の偏差」の項目を参照

2.3.2 高温試験

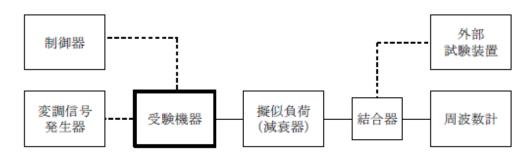
- 2.3.2.1 受験機器を非動作状態として温湿度試験槽内に設置し、この状態で温湿度試験槽内の温度を高温(40°C、50°C、60°Cのうち受験機器の仕様の範囲内で最高のもの)、かつ常湿に設定する。
- 2.3.2.2 この状態で1時間放置する。
- 2.3.2.3 上記「2.3.2.2」の時間経過後、温湿度試験槽内で規定の電源電圧(注 1)を加えて受験機器を動作させる。
- 2.3.2.4 試験装置を用いて受験機器の周波数を測定する。(注2)

2.3.3 湿度試験

- 2.3.3.1 受験機器を非動作状態として温湿度試験槽内に設置し、この状態で温湿度試験 槽内の温度を35℃に、相対湿度95%又は受験機器の仕様の最高湿度に設定する。
- 2.3.3.2 この状態で4時間放置する。
- 2.3.3.3 「2.3.3.2」の時間経過後、温湿度試験槽の設定を常温常湿の状態に戻し、結露 していないことを確認した後、規定の電源電圧(注1)を加えて受験機器を動作 させる。

2.3.3.4 試験装置を用いて受験機器の周波数を測定する。(注2)

2.4 補足事項


- 2.4.1 本試験項目は認証の試験の場合のみに行う。
- 2.4.2 常温(5°C~35°C)、常湿(45%~85%(相対湿度))の範囲内の環境下のみで使用される 旨が工事設計書に記載されている場合には本試験項目は行わない。
- 2.4.3 使用環境の温湿度範囲について、温度又は湿度のいずれか一方が常温又は常湿の範囲より狭く、かつ、他方が常温又は常湿の範囲より広い場合であって、その旨が工事設計書に記載されている場合には、当該狭い方の条件を保った状態で当該広い方の条件の試験を行う。
- 2.4.4 常温、常湿の範囲を超える場合であっても、「2.3.1」から「2.3.3」の範囲に該当しないものは温湿度試験を省略できる。

3 周波数の偏差(1)

適用範囲:一の搬送波を送信する送信装置に適用する。

3.1 測定系統図

3.2 測定器の条件等

- 3.2.1 周波数計は波形解析器を用いる。
- 3.2.2 周波数計の測定確度は、規定の許容偏差の1/10以下の確度とする。

3.3 受験機器の状態

- 3.3.1 外部試験装置から試験信号を加える。
- 3.3.2 試験周波数及び最大出力に設定し、継続的バースト送信状態とする。
- 3.4 測定操作手順

受験機器の周波数を測定する。

3.5 結果の表示

周波数の測定値をMHz単位で記載するとともに、測定値の割当周波数に対する偏差をHz単位で(+)または(-)の符号を付けて表示する。

3.6 補足事項

- 3.6.1 外部試験装置の基準周波数が、受験機器の周波数に影響することに注意する。
- 3.6.2 受験機器を無変調状態にできる場合は、周波数計としてカウンタを用いて測定してもよい。

4 周波数の偏差(2)

適用範囲:キャリアアグリゲーションを用いて連続しない複数の搬送波を同時に送信する 送信装置に適用する。

4.1 測定系統図

「周波数の偏差(1)」を参照すること。

4.2 測定器の条件等

「周波数の偏差(1)」を参照すること。

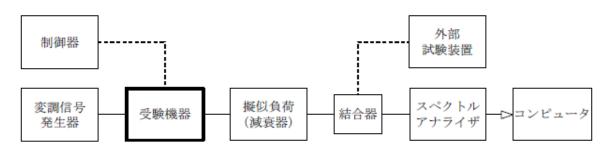
- 4.3 受験機器の状態
 - 4.3.1 キャリアアグリゲーションを構成し、連続しない複数の搬送波を同時に送信する。
 - 4.3.2 その他は、「周波数の偏差(1)」を参照すること。
- 4.4 測定操作手順

各搬送波について、周波数を測定する。

4.5 結果の表示

「周波数の偏差(1)」を参照すること。

4.6 補足事項


- 4.6.1 連続しない複数の搬送波を同時に送信した状態で各搬送波の周波数を測定できないときは、一の搬送波ごとに送信を行い、その搬送波の周波数を測定してもよい。
- 4.6.2 その他は、「周波数の偏差(1)」を参照すること。

5 占有周波数帯幅(1)

適用範囲: 一の搬送波を送信する送信装置に適用する。

5.1 測定系統図

5.2 測定器の条件等

5.2.1 スペクトルアナライザの設定は、次のとおりとする。

● 中心周波数 搬送波周波数

掃引周波数幅 許容値の約2~3.5倍

分解能帯域幅 許容値の約1%以下

● ビデオ帯域幅 分解能帯域幅の3倍程度

● 掃引時間 測定精度が保証される時間(注1)

Y軸スケール 10dB/Div

● 入力レベル 搬送波レベルがスペクトルアナライザ雑音より40 d B以上高 いこと

● データ点数 400 点以上

掃引モード 連続掃引(波形が変動しなくなるまで)

◆ 検波モード ポジティブピーク

● 表示モード マックスホールド

注1 掃引時間は、1データ点あたり1バースト周期以上となる時間とする。

5.3 受験機器の状態

- 5.3.1 外部試験装置から試験信号を加える。
- 5.3.2 試験周波数及び最大出力に設定し、継続的バースト送信状態とする。
- 5.3.3 キー操作、制御器又は外部試験装置を用いて占有周波数帯幅が最大となる状態に設定する。

5.4 測定操作手順

- 5.4.1 スペクトルアナライザの設定を「5.2.1」とし、波形の変動がなくなるまで連続掃引 する。
- 5.4.2 掃引終了後、全データをコンピュータの配列変数に取り込む。
- 5.4.3 全データ (d B値)を電力次元の真数に変換する。
- 5.4.4 全データの総和を求め、「全電力」として記憶する。
- 5.4.5 最低周波数のデータから順次上に電力の加算を行い、この値が全電力の0.5%となる 限界データ点を求める。その限界データ点の周波数を「下限周波数」として記憶する。
- 5.4.6 最高周波数のデータから順次下に電力の加算を行い、この値が全電力の0.5%となる 限界データ点を求める。その限界データ点の周波数を「上限周波数」として記憶する。

14 of 31

5.4.7 占有周波数帯幅(=「上限周波数」-「下限周波数」)を計算する。

5.5 結果の表示

占有周波数帯幅の測定値をMHz単位で表示する。

- 5.6 補足事項
 - 5.6.1 「5.3.3」で規定する占有周波数帯幅が最大となる状態とは、変調方式(QPSK、16QAM等)、サブキャリア間隔、サブキャリア数等の組合せで決定される送信条件の中で占有周波数帯幅が最大となる状態で、かつ、その送信条件において最大出力の状態をいう。
 - 5.6.2 「5.3.3」で規定する占有周波数帯幅が最大となる状態の特定が困難な場合は、推定 される複数の送信条件で測定を行う。
- 6 占有周波数帯幅(2)

適用範囲:キャリアアグリゲーションを用いて連続しない複数の搬送波を同時に送信する 送信装置に適用する。

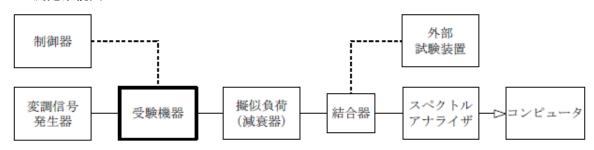
6.1 測定系統図

「占有周波数帯幅(1)」を参照すること。

6.2 測定器の条件等

「占有周波数帯幅(1)」を参照すること。

- 6.3 受験機器の状態
 - 6.3.1 キャリアアグリゲーションを構成し、連続しない複数の搬送波を同時に送信する。 6.3.2 その他は、「占有周波数帯幅(1)」を参照すること。
- 6.4 測定操作手順
 - 6.4.1 各搬送波について、占有周波数帯幅を測定する。
 - 6.4.2 測定手順は、「占有周波数帯幅(1)」を参照すること。
- 6.5 結果の表示


「占有周波数帯幅(1)」を参照すること。

6.6 補足事項

「占有周波数帯幅(1)」を参照すること。

- 7 スプリアス発射又は不要発射の強度(帯域外領域)(1)
 - 適用範囲:一の搬送波を送信する送信装置に適用する。
 - 7.1 測定系統図

7.2 測定器の条件等

- 7.2.1 不要発射探索時のスペクトルアナライザの設定は、次のとおりとする。
 - 掃引周波数幅 (注1)
 - 分解能帯域幅 30kHz(注2の周波数範囲)1MHz(注3の周波数範囲)
 - ビデオ帯域幅 分解能帯域幅と同程度
 - 掃引時間 測定精度が保証される時間(注4)
 - Y軸スケール 10dB/Div
 - 入力レベル 最大のダイナミックレンジとなる値
 - データ点数 400点以上
 - 掃引モード 単掃引
 - 検波モード ポジティブピーク
 - 注1 掃引周波数幅は、次のとおりとする。

チャネル間隔5MHz

```
    搬送波周波数± (2.5MHz~3.5MHz)
    搬送波周波数± (3.5MHz~7.5MHz)
    搬送波周波数± (7.5MHz~8.5MHz)
    搬送波周波数± (8.5MHz~12.5MHz)
    (注3)
```

チャネル間隔10MHz

搬送波周波数± (5MHz~6MHz)(注2)搬送波周波数± (6MHz~10MHz)(注3)搬送波周波数± (10MHz~15MHz)(注3)搬送波周波数± (15MHz~20MHz)(注3)

チャネル間隔15MHz

搬送波周波数± (7.5MHz~8.5MHz) (注2)
 搬送波周波数± (8.5MHz~12.5MHz) (注3)
 搬送波周波数± (12.5MHz~22.5MHz) (注3)
 搬送波周波数± (22.5MHz~27.5MHz) (注3)

チャネル間隔20MHz

搬送波周波数± (10MHz~11MHz) (注2)
 搬送波周波数± (11MHz~15MHz) (注3)
 搬送波周波数± (15MHz~30MHz) (注3)
 搬送波周波数± (30MHz~35MHz) (注3)

注4 掃引時間は、1データ点あたり1バースト周期以上となる時間とする。

7.2.2 不要発射振幅測定時のスペクトルアナライザの設定は、次のとおりとする。

中心周波数 探索した不要発射の周波数

掃引周波数幅 OHz分解能帯域幅 1MHz

ビデオ帯域幅 分解能帯域幅の3倍程度掃引時間 測定精度が保証される時間

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

掃引モード 単掃引検波モード RMS

7.2.3 不要発射振幅測定時のスペクトルアナライザの設定は、次のとおりとする。

中心周波数 探索した不要発射の周波数

● 掃引周波数幅 チャネル間隔×1%(注2の周波数範囲)

1MHz (注3の周波数範囲)

分解能帯域幅 30kHz

• ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 測定精度が保証される時間(注5)

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

掃引モード 単掃引検波モード RMS

注5 掃引時間は、(データ点数×バースト周期×任意の自然数)とする。

7.3 受験機器の状態

- 7.3.1 外部試験装置から試験信号を加える。
- 7.3.2 試験周波数及び最大出力に設定し、継続的バースト送信状態とする。
- 7.3.3 キー操作、制御器又は外部試験装置を用いて帯域外領域における不要発射の強度が最大となる状態に設定する。

7.4 測定操作手順

- 7.4.1 スペクトルアナライザの設定を「7.2.1」とし、掃引周波数幅内の不要発射を探索する。ただし、「注2」の周波数範囲においては、掃引周波数幅内の全データについて参照帯域幅当たりの電力総和(Ps)を計算し、その中の最大値を探索値とする。
- 7.4.2 探索した不要発射の振幅値の最大値が許容値以下の場合は、この最大値を測定値とする。
- 7.4.3 「注3」の周波数範囲において、「7.4.2」の測定値が許容値を超える場合は、スペクトルアナライザの設定を「7.2.2」とし、不要発射の振幅値の平均値(バースト内平均電力)を求めて測定値とする。
- 7.4.4 「注3」の周波数範囲において、「7.4.3」の測定値が許容値を超える場合は、スペクトルアナライザの設定を「7.2.3」とし、掃引周波数幅内の電力総和を計算し、バースト時間率の逆数を乗じた値を測定値とする。
- 7.4.5 「注2」の周波数範囲において、「7.4.2」の測定値が許容値を超える場合は、スペクトルアナライザの設定を「7.2.3」とし、掃引周波数幅内の電力総和を計算し、バースト時間率の逆数を乗じた値を測定値とする。

7.5 結果の表示

不要発射の強度の測定値を測定帯域ごとに離調周波数とともに、技術基準に規定された単位で表示する。

7.6 補足事項

- 7.6.1 「7.2.1」で規定する掃引周波数幅は、(分解能帯域幅/2)の帯域幅分内側に設定 してもよい。
- 7.6.2 「7.3.3」で規定する帯域外領域における不要発射の強度が最大となる状態とは、変調方式(QPSK、16QAM等)、サブキャリア間隔、サブキャリア数等の組合せで決定される送信条件の中で、変調過程又は送信部の非線形性による不要発射が最大となる状態で、かつ、その送信条件において最大出力の状態をいう。
- 7.6.3 「7.3.3」で規定する不要発射の強度が最大となる状態の特定が困難な場合は、推定される複数の送信条件で測定を行う。
- 8 スプリアス発射又は不要発射の強度(帯域外領域)(2)

適用範囲:キャリアアグリゲーションを用いて連続しない複数の搬送波を同時に送信する 送信装置に適用する。

8.1 測定系統図

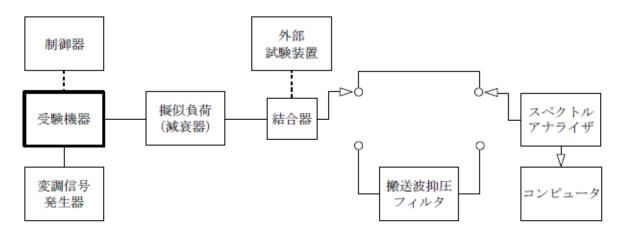
「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

8.2 測定器の条件等

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

8.3 受験機器の状態

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。


- 8.4 測定操作手順
 - 8.4.1 各搬送波について、帯域外領域における不要発射の強度を測定する。
 - 8.4.2 測定手順は、「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。
- 8.5 結果の表示

「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

- 8.6 補足事項
 - 8.6.1 同時に発射する複数の搬送波の周波数のうち最も高い周波数より高い周波数においては当該最も高い周波数の搬送波、最も低い周波数より低い周波数においては当該最も低い周波数の搬送波のチャネル間隔に応じた試験を行う。
 - 8.6.2 同時に発射する複数の搬送波の間の周波数範囲においては、各搬送波に関する試験を行う。ただし、複数の搬送波のうち、一の搬送波のチャネル間隔に応じた周波数範囲と他の搬送波のチャネル間隔に応じた周波数範囲が重複する場合にあっては、当該一の搬送波のチャネル間隔に応じた許容値又は当該他の搬送波のチャネル間隔に応じた許容値を満たすことを確認する。
 - 8.6.3 その他は、「スプリアス発射又は不要発射の強度(帯域外領域)(1)」を参照すること。

- 9 スプリアス発射又は不要発射の強度(スプリアス領域) (1)
 - 適用範囲: 一の搬送波を送信する送信装置に適用する。
 - 9.1 測定系統図

9.2 測定器の条件等

- 9.2.1 搬送波抑圧フィルタは、必要に応じて使用する
- 9.2.2 不要発射探索時のスペクトルアナライザの設定は、次のとおりとする。
 - 掃引周波数幅 (注1)
 - 分解能帯域幅 (注1)
 - ビデオ帯域幅 分解能帯域幅と同程度
 - 掃引時間 測定精度が保証される時間(注2)
 - Y軸スケール 10dB/Div
 - 入力レベル 最大のダイナミックレンジとなる値
 - データ点数 400点以上掃引モード 単掃引
 - 検波モード ポジティブピーク

 $1, 475.9 MHz \sim 1, 510.9 MHz$

注1 掃引周波数幅及び分解能帯域幅の設定は、次のとおりとする。

掃引周波数幅	分解能帯域幅
9 k H z ~ 1 5 0 k H z	1 k H z
1 5 0 k H z ~ 3 0 M H z	1 O k H z
3 0 M H z ~ 1, 0 0 0 M H z	1 O O k H z
(470MHz~710MHz,	773MHz~803MHz、
860MHz~890MHz,	945MHz~960MHzを除く。)
470MHz~710MHz 773MHz~799MHz 799MHz~803MHz 860MHz~890MHz 945MHz~960MHz 1,000 MHz~12.75GH	1 0 0 k H z 1 M H z
1,884.5MHz~1,915.	9MHz、1,805MHz~1,880MHz、 7MHz、2,010MHz~2,025MHz、 z、3,400MHz~4,100MHz、 zを除く。)

1MHz

1,805MHz~1,880MHz
1,884.5MHz~1,915.7MHz
2,010MHz~2,025MHz
1MHz
2,110MHz~2,170MHz
3,400MHz~4,100MHz
1MHz
4,500MHz~4,900MHz
1MHz

注2 掃引時間は、1データ点あたり1バースト周期以上となる時間とする。

9.2.3 不要発射振幅測定時のスペクトルアナライザの設定は、次のとおりとする。

中心周波数 探索した不要発射周波数

掃引周波数幅 OHz分解能帯域幅 (注1)

ビデオ帯域幅 分解能帯域幅の3倍程度掃引時間 測定精度が保証される時間

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

掃引モード 単掃引 検波モード RMS

9.2.4 不要発射振幅測定時のスペクトルアナライザの設定は、次のとおりとする。

♣ 掃引周波数幅 470MHz~710MHz

● 分解能帯域幅 1 M H z

ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 測定精度が保証される時間(注3)

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

データ点数 400点以上掃引モード 単掃引検波モード RMS

注3 掃引時間は、(データ点数×バースト周期×任意の自然数)とする。

- 9.3 受験機器の状態
 - 9.3.1 外部試験装置から試験信号を加える。
 - 9.3.2 試験周波数及び最大出力に設定し、継続的バースト送信状態とする。
 - 9.3.3 キー操作、制御器又は外部試験装置を用いてスプリアス領域における不要発射の強度が最大となる状態に設定する。
- 9.4 測定操作手順
 - 9.4.1 スペクトルアナライザの設定を「9.2.2」とし、掃引周波数幅内の不要発射を探索する。送信帯域を探索する場合は、「注4」に規定する周波数範囲とする。

注4 チャネル間隔により、次の周波数範囲とする。

チャネル間隔 5 MH z搬送波周波数± 1 2.5 MH z 以上チャネル間隔 1 0 MH z搬送波周波数± 2 0 MH z 以上チャネル間隔 1 5 MH z搬送波周波数± 2 7.5 MH z 以上チャネル間隔 2 0 MH z搬送波周波数± 3 5 MH z 以上

- 9.4.2 探索した不要発射の振幅値の最大値が許容値以下の場合は、この最大値を測定値とする。
- 9.4.3 探索した不要発射の振幅値が許容値を超える場合は、スペクトルアナライザの中心周 波数の設定精度を高めるため、掃引周波数幅を100MHz、10MHz、1MHz

というように分解能帯域幅の10倍程度まで順次狭くして不要発射の周波数を求める。

- 9.4.4 スペクトルアナライザの設定を「9.2.3」とし、不要発射の振幅値の平均値(バースト内平均電力) を求めて測定値とする。
- 9.4.5 参照帯域幅6MHzで規定される周波数範囲(470MHz~710MHz)の測定操作手順は、次のとおりとする。
- 9.4.6 スペクトルアナライザの設定を「9.2.2」とし、掃引周波数幅内の不要発射を探索する。
- 9.4.7 探索した不要発射の振幅値の最大値に分解能帯域幅換算値(=10log(参照帯域幅/分解能帯域幅))を加算した値が許容値以下の場合は、この最大値に分解能帯域 幅換算値を加算した値を測定値とする。
- 9.4.8 探索した不要発射の振幅値に分解能帯域幅換算値を加算した値が許容値を超える場合は、スペクトルアナライザの設定を「9.2.4」とし、掃引周波数幅内の全データについて参照帯域幅当たりの電力総和(バースト波の場合はバースト時間率の逆数を乗じた値)を計算し、その中の最大値を測定値とする。

9.5 結果の表示

- 9.5.1 不要発射の強度の測定値を測定帯域ごとに周波数とともに、技術基準に規定する単位で表示する。
- 9.5.2 多数点を表示する場合は、許容値の帯域ごとにレベルの降順に並べて表示する。

9.6 補足事項

- 9.6.1 搬送波抑圧フィルタを使用する場合は、測定値を補正する必要がある。
- 9.6.2 「9.2.2」で規定する掃引周波数幅は、(分解能帯域幅/2)の帯域幅分内側に設定 してもよい。
- 9.6.3 その他は、「スプリアス発射又は不要発射の強度(帯域外領域)」を参照すること。

10 スプリアス発射又は不要発射の強度(スプリアス領域)(2)

適用範囲:キャリアアグリゲーションを用いて連続しない複数の搬送波を同時に送信する 送信装置に適用する。

10.1 測定系統図

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

10.2 測定器の条件等

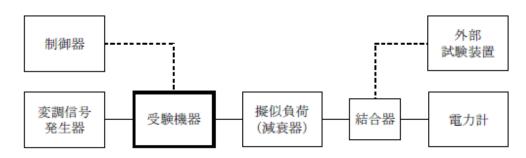
「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

- 10.3 受験機器の状態
 - 10.3.1 キャリアアグリゲーションを構成し、連続しない複数の搬送波を同時に送信する。
 - 10.3.2 その他は、「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照 すること。
- 10.4 測定操作手順

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

10.5 結果の表示

「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。


- 10.6 補足事項
 - 10.6.1 各搬送波に応じた試験を行う。ただし、複数の搬送波のうち、一の搬送波のチャネル間隔に応じた周波数範囲と他の搬送波のチャネル間隔に応じた周波数範囲が重複する場合にあっては、当該一の搬送波のチャネル間隔に応じた許容値又は当該他の搬送波のチャネル間隔に応じた許容値のうちいずれか高い方を適用する。
 - 10.6.2 その他は、「スプリアス発射又は不要発射の強度(スプリアス領域)(1)」を参照すること。

11 空中線電力の偏差(1)

適用範囲: 一の搬送波を送信する送信装置に適用する。

11.1 測定系統図

11.2 測定器の条件等

- 11.2.1 電力計の型式は、熱電対、サーミスタ等による熱電変換型またはこれらと同等の性能があるものとする。
- 11.2.2 減衰器の減衰量は、電力計に最適動作入力レベルを与えるものとする。

11.3 受験機器の状態

- 11.3.1 外部試験装置から試験信号を加える。
- 11.3.2 試験周波数及び最大出力に設定し、継続的バースト送信状態とする。
- 11.3.3 複数の空中線端子がある場合は、キー操作、制御器又は外部試験装置により空中線端子ごとに最大出力となるように設定する。

11.4 測定操作手順

- 11.4.1 継続的なバースト波の電力を十分長い時間にわたり、電力計で測定する。
- 11.4.2 上記「11.4.1」の測定値にバースト時間率の逆数を乗じた値を測定値(バースト内平均電力)とする。
- 11.4.3 複数の空中線端子がある場合は、各空中線端子において測定を行う。

11.5 結果の表示

空中線電力の絶対値をW単位で、定格(工事設計書に記載される)の空中線電力に対する偏差を%単位で(+)または(-)の符号をつけて表示する。

11.6 補足事項

11.6.1 「11.2.1」において、スペクトルアナライザの検波モードをRMSに設定して測定する場合は、電力計に代えてスペクトルアナライザを用いてもよい。ただし、電力計を用いた測定結果と同等となることを事前に確認する。(注1)

注1 スペクトルアナライザの中心周波数を試験周波数、掃引周波数幅を技術基準で規定する占有周波数帯幅、掃引時間を(データ点数×1フレーム時間(10ms))、表示モードをRMS平均、掃引回数を10回以上に設定して掃引周波数幅内の電力総和を求める。求めた電力総和にバースト時間率の逆数を乗じた値を測定値とする。

- 11.6.2 「11.3.3」で規定する最大出力となる状態とは、変調方式(QPSK、16QAM等)、 サブキャリア間隔、サブキャリア数等の組合せで決定される送信条件の中で、最大送 信電力となる状態をいう。
- 11.6.3 「11.3.3」で規定する最大出力となる状態の特定が困難な場合は、推定される複数の 送信条件で測定を行う。

12 空中線電力の偏差(2)

適用範囲:キャリアアグリゲーションを用いて連続しない複数の搬送波を同時に送信する 送信装置に適用する。

12.1 測定系統図

「空中線電力の偏差(1)」を参照すること。

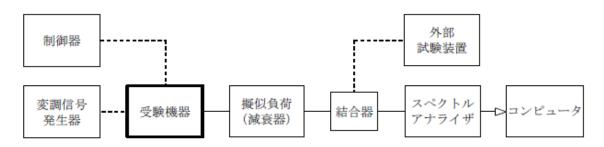
12.2 測定器の条件等

「空中線電力の偏差(1)」を参照すること。

12.3 受験機器の状態

12.3.1 キャリアアグリゲーションを構成し、連続しない複数の搬送波を同時に送信する。12.3.2 その他は、「空中線電力の偏差(1)」を参照すること。

- 12.4 測定操作手順
 - 12.4.1 「空中線電力の偏差(1)」を参照すること。
 - 12.4.2 複数の搬送波の空中線電力の総和を求める。
- 12.5 結果の表示
 - 12.5.1 「空中線電力の偏差(1)」を参照すること。
 - 12.5.2 空中線電力の総和を求めたときは、測定値の総和のほか、各空中線端子の測定値を表示する。
- 12.6 補足事項


「空中線電力の偏差(1)」を参照すること。

13 隣接チャネル漏洩電力(1)

適用範囲:一の搬送波を送信する送信装置に適用する。

13.1 測定系統図

13.2 測定器の条件等

13.2.1 スペクトルアナライザの設定は、次のとおりとする。

• 中心周波数 測定操作手順に示す周波数 (注1)

・ 掃引周波数幅 測定操作手順に示す周波数幅(注1)・ 分解能帯域幅 3 k H z ~ 3 O O k H z

● 方解能帯域幅 3 k f z ~ 3 0 0 k f z● ビデオ帯域幅 分解能帯域幅の3倍程度

掃引時間 測定精度が保証される時間(注2)

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

● データ点数 400 点以上

・ 掃引モード 連続掃引(波形が変動しなくなるまで)

検波モード ポジティブピーク表示モード マックスホールド

注1 チャネル間隔により、次のとおりとする。ただし、fcは、搬送波周波数とする。

チャネル間隔	中心周波数	掃引周波数幅
5MHz	$f_c \pm 5MHz$	5MHz
	$f_c \pm 5MHz$	4.515MHz
	$f_c \pm 10MHz$	5 M H z
1 0 M H z	$f_c \pm 7.5MHz$	5MHz
	$f_c \pm 10MHz$	9.375MHz
	$f_c \pm 12.5MHz$	5 M H z
15MHz	$f_c \pm 10MHz$	5 M H z
	$f_c \pm 15MHz$	5MHz
	$f_c \pm 15MHz$	14.235MHz
20MHz	$f_c \pm 12.5MHz$	5 M H z
	$f_c \pm 17.5MHz$	5MHz
	$f_c \pm 20MHz$	19.095MHz

注2 掃引時間は、1データ点当たり1バースト周期以上となる時間とする。

13.2.2 電力測定時のスペクトルアナライザの設定は、次のとおりとする。

中心周波数 測定操作手順に示す周波数(注1)

● 掃引周波数幅 測定操作手順に示す周波数幅(注1)

分解能帯域幅 3 k H z ~ 3 0 0 k H zビデオ帯域幅 分解能帯域幅の3倍程度

掃引時間 測定精度が保証される時間(注3)

Y軸スケール 10dB/Div

入力レベル 最大のダイナミックレンジとなる値

掃引モード 単掃引検波モード RMS

注3 掃引時間は、(データ点数×バースト周期×任意の自然数)とする。

13.3 受験機器の状態

- 13.3.1 外部試験装置から試験信号を加える。
- 13.3.2 試験周波数及び最大出力に設定し、継続的バースト送信状態とする。
- 13.3.3 キー操作、制御器又は外部試験装置を用いて隣接チャネル漏洩電力が最大となる状態に設定する。

13.4 測定操作手順

13.4.1 隣接チャネル漏洩電力の相対値の測定

- 13.4.1.1 スペクトルアナライザの設定を「13.2.1」とする。
- 13.4.1.2 スペクトルアナライザの中心周波数を搬送波周波数、掃引周波数幅を技術基準で規定する占有周波数帯幅に設定して掃引する。
- 13.4.1.3 掃引周波数幅内の電力総和を求め、搬送波電力(Pc)とする。
- 13.4.1.4 スペクトルアナライザの中心周波数を搬送波周波数の上側の規定の離調周波数 (注1)に設定して掃引する。
- 13.4.1.5 掃引周波数幅内の電力総和を求め、上側隣接チャネル漏洩電力 (P_{\cup}) とする。ただし、参照帯域幅が3.84MHzで規定される測定の場合は、RRCフィルタ (Q_{\cup}) の特性を用いて掃引周波数幅内の各データを補正し、参照帯域幅内の電力総和を求める。
- 13.4.1.6 スペクトルアナライザの中心周波数を搬送波周波数の下側の規定の離調周波数 (注1)に設定し、上側隣接チャネル漏洩電力と同様に下側隣接チャネル漏洩 電力(P₁)を測定する。
- 13.4.1.7 上側隣接チャネル漏洩電力比 (= 1 O l o g (P ∪ / P c)) 及び下側隣接チャネル漏洩電力比 (= 1 O l o g (P ∟ / P c)) を計算する。

13.4.2 隣接チャネル漏洩電力の絶対値の測定

- 13.4.2.1 スペクトルアナライザの設定を「13.2.1」とする。
- 13.4.2.2 スペクトルアナライザの中心周波数を搬送波周波数の上側の規定の離調周波数 (注1)に設定し、掃引周波数幅内の上側隣接チャネル漏洩電力を探索する。
- 13.4.2.3 探索した漏洩電力の最大値に分解能帯域幅換算値を加算した値が許容値以下の場合は、この最大値に分解能帯域幅換算値を加算した値を測定値とする。
- 13.4.2.4 「13.4.2.3」において許容値を超える場合は、スペクトルアナライザの設定を「13.2.2」とし、中心周波数を搬送波周波数の上側の規定の離調周波数(注 1)に設定して掃引する。
- 13.4.2.5 掃引周波数幅内の電力総和を求め、上側隣接チャネル漏洩電力(P_S)とする。ただし、参照帯域幅が3.8 4 M H z で規定される測定の場合は、R R C フィルタ(ロールオフ率0.22)の特性を用いて掃引周波数幅内の各データを補正し、参照帯域幅内の電力総和を求める。
- 13.4.2.6 「13.4.2.5」で求めた電力総和にバースト時間率の逆数を乗じた値を測定値と する。
- 13.4.2.7 スペクトルアナライザの中心周波数を搬送波周波数の下側の規定の離調周波数 (注1)に設定し、上側隣接チャネル漏洩電力と同様に下側隣接チャネル漏洩 電力を求める。

13.5 結果の表示

上側隣接チャネル漏洩電力比及び下側隣接チャネル漏洩電力比の測定値、又は上側隣接チャネル漏洩電力及び下側隣接チャネル漏洩電力の測定値を技術基準に規定する単位で離調周波数ごとに表示する。

13.6 補足事項

- 13.6.1 「13.3.3」で規定する隣接チャネル漏洩電力が最大となる状態とは、変調方式(QPSK、16QAM等)、サブキャリア間隔、サブキャリア数等の組合せで決定される 送信条件の中で、変調過程又は送信部の非線形性による不要発射が最大となる状態で、 かつ、その送信条件において最大出力の状態をいう。
- 13.6.2 「13.3.3」で規定する隣接チャネル漏洩電力が最大となる状態の特定が困難な場合は、最大になると推定される複数の送信条件で測定を行う。

14 隣接チャネル漏洩電力(2)

適用範囲:キャリアアグリゲーションを用いて連続しない複数の搬送波を同時に送信する 送信装置に適用する。

14.1 測定系統図

「隣接チャネル漏洩電力(1)」を参照すること。

14.2 測定器の条件等

「隣接チャネル漏洩電力(1)」を参照すること。

14.3 受験機器の状態

14.3.1 キャリアアグリゲーションを構成し、連続しない複数の搬送波を同時に送信する。 14.3.2 その他は、「隣接チャネル漏洩電力(1)」を参照すること。

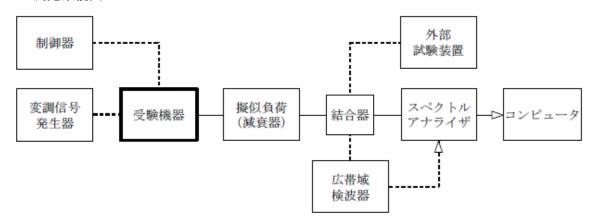
14.4 測定操作手順

「隣接チャネル漏洩電力(1)」を参照すること。

14.5 結果の表示

「隣接チャネル漏洩電力(1)」を参照すること。

14.6 補足事項


- 14.6.1 同時に送信する複数の搬送波の間の周波数範囲においては、当該同時に送信する複数の搬送波の間の周波数範囲が各搬送波の占有周波数帯幅以上の場合に限り、測定を行う。
- 14.6.2 その他は、「隣接チャネル漏洩電力(1)」を参照すること。

15 搬送波を送信していないときの漏洩電力(1)

適用範囲:一の搬送波を送信する送信装置に適用する。

15.1 測定系統図

15.2 測定器の条件等

15.2.1 漏洩電力探索時のスペクトルアナライザの設定は、次のとおりとする。

掃引周波数幅 陸上移動局送信帯域(注1)

● 分解能帯域幅 1 MHz

● ビデオ帯域幅 分解能帯域幅と同程度

掃引時間 測定精度が保証される時間

• Y軸スケール 10dB/Div

● データ点数 400 点以上

● 掃引モード 単掃引

● 検波モード ポジティブピーク

注1 陸上移動局送信帯域は、次のとおりとする。

(700MHz帯) 718MHz~748MHz

(800MHz帯) 815MHz~845MHz

(900MHz帯) 900MHz~915MHz

(1.5GHz帯) 1,427.9MHz~1,462.9MHz

(1.7GHz帯) 1,710MHz~1,785MHz

(2GHz帯) 1,920MHz~1,980MHz

15.2.2 漏洩電力測定時のスペクトルアナライザの設定は、次のとおりとする。

掃引周波数幅 陸上移動局送信帯域(注1)

分解能帯域幅 1 MHz

ビデオ帯域幅 分解能帯域幅の3倍程度

掃引時間 測定精度が保証される時間

Y軸スケール 10dB/Div

データ点数 400 点以上

掃引モード 単掃引

◆ 検波モード RMS

15.3 受験機器の状態

- 15.3.1 外部試験装置から試験信号を加える。
- 15.3.2 試験周波数に設定し、継続的バースト送信状態とする。
- 15.3.3 キー操作、制御器又は外部試験装置を用いて送信を停止した状態とする。ただし、バースト波のオフ時間で測定を行う場合は、この限りでない。

15.4 測定操作手順

- 15.4.1 必要に応じて広帯域検波器等によりスペクトルアナライザに外部トリガをかけ、搬送波を送信していない時間を測定できるようにする。
- 15.4.2 スペクトルアナライザの設定を「15.2.1」とし、陸上移動局送信帯域を掃引して漏洩電力の最大値を探索する
- 15.4.3 探索した漏洩電力の最大値に分解能帯域幅換算値を加算した値が許容値以下の場合は、この最大値に分解能帯域幅換算値を加算した値を測定値とする。
- 15.4.4 「15.4.3」において許容値を超える場合は、「15.4.1」の設定を行い、スペクトルア ナライザの設定を「15.2.2」とし、掃引周波数幅内を掃引する。
- 15.4.5 掃引周波数幅内の全データについて参照帯域幅当たりの電力総和を計算し、その中の最大値を測定値とする。

15.5 結果の表示

搬送波を送信していないときの電力を技術基準に規定された単位で周波数とともに表示する。

15.6 補足事項

15.6.1 「15.2.1」で規定する掃引周波数幅は、占有周波数帯域幅内の搬送波のオフ時間の漏洩電力が最大となる場合は、占有周波数帯幅の周波数に変更してもよい。

16 搬送波を送信していないときの漏洩電力(2)

適用範囲:キャリアアグリゲーションを用いて連続しない複数の搬送波を同時に送信する 送信装置に適用する。

16.1 測定系統図

「搬送波を送信していないときの漏洩電力(1)」を参照すること。

16.2 測定器の条件等

「搬送波を送信していないときの漏洩電力(1)」を参照すること。

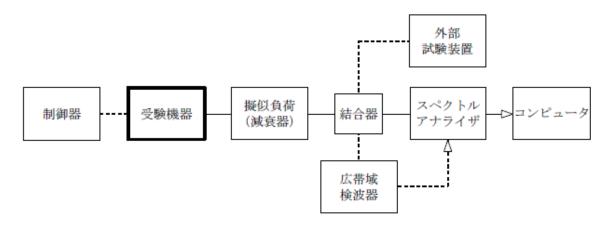
16.3 受験機器の状態

16.3.1 キャリアアグリゲーションを構成し、連続しない複数の搬送波を同時に送信する。16.3.2 その他は、「搬送波を送信していないときの漏洩電力(1)」を参照すること。

- 16.4 測定操作手順
 - 16.4.1 「搬送波を送信していないときの漏洩電力(1)」を参照すること。
 - 16.4.2 「搬送波を送信していないときの漏洩電力(1)」の「15.6」を適用する場合は、各搬送波について測定を行うこと。
- 16.5 結果の表示

「搬送波を送信していないときの漏洩電力(1)」を参照すること。

16.6 補足事項


「搬送波を送信していないときの漏洩電力(1)」を参照すること。

17 副次的に発する電波等の限度

適用範囲:一の搬送波を送信する送信装置に適用する。

17.1 測定系統図

17.2 測定器の条件等

17.2.1 擬似負荷 (減衰器) の減衰量は、測定対象が低レベルのため、なるべく低い値とする。 17.2.2 副次発射探索時のスペクトルアナライザの設定は、次のとおりとする。

● 掃引周波数幅 30MHz~1,000MHz

 $1,000MHz \sim 12.75GHz$

● 分解能帯域幅 100kHz(1GHz未満)

1MHz (1GHz以上)

● ビデオ帯域幅 分解能帯域幅と同程度

● 掃引時間 測定精度が保証される時間

• Y軸スケール 10dB/Div

● データ点数 400 点以上

• 掃引モード 単掃引

● 検波モード ポジティブピーク

17.2.3 副次発射測定時のスペクトルアナライザの設定は、次のとおりとする。

中心周波数 探索した副次発射の周波数

● 掃引周波数幅 OHz

● 分解能帯域幅 100kHz(1GHz未満)

1MHz (1GHz以上)

• ビデオ帯域幅 分解能帯域幅と同程度

• 掃引時間 測定精度が保証される時間

RMS

Y軸スケール 10dB ∕ Divデータ点数 400 点以上掃引モード 単掃引

検波モード

17.3 受験機器の状態

- 17.3.1 制御器又は外部試験装置を用いて受験機器の送信を停止し、試験周波数を連続受信する状態とする。
- 17.3.2 連続受信状態にできない場合は、外部試験装置等より試験信号を加え、試験周波数を一定の周期で間欠受信する状態とする。

17.4 測定操作手順

- 17.4.1 スペクトルアナライザの設定を「17.2.2」とし、掃引周波数幅内の副次発射を探索する。ただし、外部試験装置を使用している場合は、その信号を除く。
- 17.4.2 探索した副次発射の振幅値の最大値が許容値以下の場合は、この最大値を測定値とする。
- 17.4.3 探索した副次発射の振幅値が許容値を超える場合は、スペクトルアナライザの中心周波数の設定精度を高めるため、掃引周波数幅を100MHz、10MHz、1MHzというように分解能帯域幅の10倍程度まで順次狭くして副次発射の周波数を求める。
- 17.4.4 スペクトルアナライザの設定を「17.2.3」とし、副次発射の振幅値の平均値(バースト波の場合はバースト内平均電力)を求める。

17.5 結果の表示

副次的に発する電波の限度の最大の測定値を測定帯域ごとに周波数とともに、技術基準に規定する単位で表示する。

17.6 補足事項

- 17.6.1 「17.3.2」のように連続受信状態に設定できない受験機器は、受験機器の間欠受信の 周期を最短に設定し、スペクトルアナライザの掃引時間を測定精度が保証される時間 (1データ点当たりの掃引時間が間欠受信の周期以上)に設定して測定を行う。
- 17.6.2 「17.4.4」において、受信状態において副次発射がバースト状に発射される場合は、 副次発射のバースト内平均電力を求める。